Поиск толкования / значения слов

Введите слово в форму поиска, чтобы найти его значение

Например: город энергия релакс вариативный Москва

Значение слова метаматематика

метаматематика

метаматематика — раздел математической логики, изучающий основания математики, структуру математических доказательств и математических теорий с помощью формальных методов. Термин «метаматематика» буквально означает «за пределами математики».

Википедия
метаматематика

метаматем`атика, -и

Словарь русского языка Лопатина
метаматематика

теория доказательств, теория доказательства, в широком смысле слова - метатеория математики, не предполагающая никаких специальных ограничений на характер используемых метатеоретических методов, на способ задания и объём исследуемой в М. 'математики'. Более распространённым и исторически ранним (тем более, что М. вообще была первым примером 'метанауки') является следующее, более специальное понимание термина 'М.', идущее от Д. Гильберта . Открытие парадоксов ( антиномий ) в логике и множеств теории выдвинуло в начале 20 в. задачу перестройки оснований математики и логики на некоторой основе, исключающей появление противоречий. Программа логицизма предусматривала для этой цели 'сведение' математики к логике с помощью аксиоматического метода , но независимо от успешности такого 'сведения' для перестроенной т. о. математики (или лежащей в её основе логики) отсутствие известных и невозможность появления новых антиномий могло гарантировать только доказательство их непротиворечивости . Представители математического интуиционизма предлагали столь радикально пересмотреть содержание самого понятия 'математика', чтобы повинные (и даже только подозреваемые) в появлении антиномий абстракции классической математики (как, например, абстракция актуальной бесконечности) были раз и навсегда изгнаны из неё. Выдвинутая Гильбертом концепция математического формализма , с одной стороны, отказывалась от логицистических иллюзий о возможности обоснования математики путём 'сведения' её к логике, но с другой - решительно не разделяла и интуиционистского скепсиса по отношению к возможностям аксиоматического построения удовлетворительной в логическом отношении математики. Принимая значительную часть интуиционистской критики по адресу традиционной классической математики, Гильберт в то же время решил 'реабилитировать' аксиоматическую установку: 'Ничто не может изгнать нас из рая, который создал нам Кантор', - говорил он. Для этого прежде всего нужна была последовательная формализация подлежащих обоснованию математических теорий ( аксиоматической теории множеств , аксиоматической арифметики), т. е. представление их в виде исчислений ( формальных систем ) , для которых 'чисто формально' следует определить понятия аксиомы (формулы некоторого специального вида), вывода (последовательности формул, каждая из которых получается из предыдущих по строго фиксированным правилам вывода), доказательства (вывода из аксиом) и теоремы (формулы, являющейся заключительной формулой некоторого доказательства), чтобы затем, пользуясь некоторыми 'совершенно объективными' и 'стопроцентно надёжными' содержательными методами рассуждений, показать недоказуемость в данной формальной теории противоречия (т. е. невозможность ситуации, при которой её теоремами оказывалась бы какая-либо формула и её отрицание). Совокупность таких 'объективных' и 'надёжных' (во всяком случае, неуязвимых со стороны интуиционистского критицизма) методов и должна была составить М. (теорию математического доказательства). Комплекс ограничений, налагаемых на допустимые в М. методы, Гильберт охарактеризовал как финитизм: в ещё более радикальной форме, нежели интуиционизм, эта 'финитная установка' запрещает использование каких бы то ни было 'метафизических' ссылок на бесконечные ('инфинитные') совокупности. Ограничениям этим не удовлетворяют, например, такие важные метатеоретические результаты, как теорема К. Гёделя о полноте исчисления предикатов и теорема Л. Лёвенхейма - Т. Сколема об интерпретируемости любой непротиворечивой теории на области натуральных чисел, поскольку используемое в них понятие общезначимости формулы исчисления предикатов определяется с помощью 'нефинитного' представления о 'совокупности всех возможных интерпретаций' (поэтому эти метатеоремы, строго говоря, не принадлежат к М., в связи с чем их часто относят к металогике или к т. н. теоретико-множественной логике предикатов). Однако (мета) теоремы о непротиворечивости исчисления высказываний и исчисления предикатов удалось получить в русле 'финитной установки', т. е. строго метаматематическим путём. И всё же гильбертовская программа в её полном виде оказалась неосуществимой: Гёдель (
1931) показал, что никакая непротиворечивая формализация математики не может охватить всей классической математики (и даже всей формальной арифметики) - в ней непременно найдутся т. н. неразрешимые, т. е. выразимые на её языке, но не доказуемые и не опровержимые её средствами (хотя и содержательно истинные) формулы. Примером такой формулы является формула, утверждающая свою собственную недоказуемость; задать формулу со столь парадоксальной на вид интерпретацией Гёделю удалось с помощью придуманного им остроумного приёма - своего рода арифметического кодирования ('гёделевской нумерации') символов, формул и последовательностей формул формальной системы, однозначно приписывающего каждому элементу системы 'гёделевский номер'. Благодаря такой 'арифметизации синтаксиса' Гёделю удалось представить не только предикаты рассматриваемой формальной системы, но и относящиеся к ней метаматематические предикаты ('быть формулой', 'быть доказательством', 'быть теоремой' и т.п.) посредством некоторых арифметических предикатов. Утверждение этой т. н. первой теоремы Гёделя доказывается теперь с помощью рассуждения, чрезвычайно близкого к т. н. парадоксу Ришара и вообще к парадоксам типа 'Лжеца' ('я лгу') и вариантам антиномии Б. Рассела ('брадобрей, бреющий всех тех и только тех жителей деревни, которые не бреются сами' и т.п.). В качестве следствия из этой теоремы получается вторая теорема Гёделя, согласно которой непротиворечивость любой непротиворечивой формальной системы, содержащей арифметику натуральных чисел, не может быть доказана средствами, формализуемыми в этой системе. В этих теоремах Гёделя говорится, т. о., не только о свойствах рассматриваемой формальной системы, но и о некоторых метаматематических свойствах, так что они являются даже не метатеоремами, а, строго говоря, метаметатеоремами. Из них вытекает неосуществимость 'финитистской' программы Гильберта: не только вся математика, но даже арифметика натуральных чисел не допускают формализации, которая была бы одновременно полной и непротиворечивой; к тому же весь аппарат финитизма выразим средствами интуиционистской арифметики, из чего, в силу второй теоремы Гёделя, следует невозможность финитистского доказательства непротиворечивости арифметики. (Ещё один фундаментальный результат М. - т. н. теорема А. Чёрча о неразрешимости арифметики и исчисления предикатов, согласно которой не существует алгоритма распознавания доказуемости для формул соответствующих исчислений.) В некотором смысле теоремы Гёделя можно было воспринимать как 'конец М.', но, свидетельствуя об ограниченности финитизма, формализма и связанной с ними гильбертовской программы, а также аксиоматического метода в целом, эти теоремы в то же время послужили мощным стимулом поиска средств доказательств (в частности, доказательств непротиворечивости) более сильных, чем финитные, но и в определённом смысле конструктивных. Одним из таких методов явилась т. н. трансфинитная индукция до первого недостижимого конструктивного трансфинита; этот путь позволил получить доказательство непротиворечивости арифметики (Г. Генцен, В. Аккерман, П. С. Новиков, К. Шютте, П. Лоренцен и др.). Др. примером может служить т. н. ультраинтуиционистская программа обоснования математики, позволившая получить абсолютное (не пользующееся редукцией к какой-либо др. системе) доказательство непротиворечивости теоретико-множественной системы аксиом Цермело - Френкеля.Лит.: Гильберт Д., Основания геометрии, пер. с нем., М.-Л., 1948, добавл. 6-10; Клини С. К., Введение в метаматематику, пер. с англ., М., 1957; его же, Математическая логика, пер. с англ., М., 1973; Карри Х. Б., Основания математической логики, пер. с англ., М., 1969, гл. 2-3; Генцен Г., Непротиворечивость чистой теории чисел, пер. с нем., в кн.: Математическая теория логического вывода, М., 1967, с. 77-153; Нагель Э., Ньюмен Дж., Теорема Гёделя, пер. с англ., М., 1970; Тарский А., Введение в логику и методологию дедуктивных наук, пер. с англ., М., 1948; Godel K., Uber formal unent scheidbare Satze der Principia Mathematica und verwander System. I, 'Monatshefte Mathematic Physik', 1931, Bd 38, S. 173-98; Rosser В., Extensions of some theorems of Godel and Church, 'Journal Symbolic Logic', 1936, v. 1, | 3; Tarski A., Logic, semantics, metamathematics, Oxf.,

1956. Ю. А. Гастев.

Большая советская энциклопедия, БСЭ
метаматематика

метаматематика, -и

Полный орфографический словарь русского языка
метаматематика

раздел математической логики, изучаю­щий основания математики, структуру математических доказательств и математических теорий с помощью формальных методов

Викисловарь
Примеры употребления слова метаматематика в тексте

Гильбертовская метаматематика содержит в себе все установленные Кантом элементы знания: данный в созерцании объект, являющийся в пространстве и времени, синтетическое суждение об этом объекте и, наконец, синтез продуктивной способности воображения, в результате которого этот объект конструируется.

Появилась и успешно развивается теория доказательств — метаматематика.

Однако большой интерес представляет предложенное Гильбертом средство — метаматематика

Как анализ логической структуры той или иной конкретной научной теории (например, метаматематика

Пожалуй, ни одну работу ни до, ни после этого я не отделывал так старательно; и, как знать, не родилась ли вся теория групп, позднее названных группами Хогарта, из той скрытой страсти, под напором которой я вывернул корнями наружу всю аксиоматику Дилла, а затем, словно желая сделать что-то еще — хотя делать там, собственно, было уже нечего, — начал разыгрывать из себя метаматематика, чтобы взглянуть на эту анахроничную конструкцию свысока, мимоходом.

Он мог заказать любую тему, но была и обязательная программма обучения, куда входили метаматематика, метафизика, метадиалектика, метатеософия и много еще всяких разных мета-: метаатоматика, метазащита, метавооружение, метамедицина, метапсихология, метаанатомия… А еще метаквадро, метатетраэдро, метаакваидро, и это уже вообще человеческой передаче информации просто не подлежало.

Также и метаматематика породила определённые теоретико-познавательные взгляды(2).

Слова которые можно составить из слова метаматематика
аик аимак аита аки аким акита акмит акт амат амати амик амми аммиак амт ата атаи атака атакама атакамит атаки атама атата атк аттик аттика иат ика икт икта имам имамат итак итака итк кам кама кат ката киа ким кит кита кма маат мак мака макам макама маки мама мамка мат мата мати матит матка матта мик мим мита митака митта таи таим таит так таки такт такта там тамак тамм тамтам тат тата татами татка тиамат тик тика тимм тит тита тка тма ками аак аам мти ммк ака маак мит мит мкт тим тмк тати амта ммм така мика икамат атта аит кмит иам акаа мтт татти итатка матт макат кати мтк аааа китаа тамим амата ама камм амиата иак матмата атка ита тама камми микат акимат таита атаммик итта мми тима ткм татака матамата акат мма каим амак атам ати кима каи тамаки атами амами иката мимата ами атак атиа мам амит каама амк имм татта татаи макати тмм катам мамати камата аим иматка мамма има таат тамта тиаа мамаи имка татт тамми камаи актам амикам матти миа амки тиам тамати тиа тамки матак акати матаи маи катма тамма каа микта матам митт такам мамам камати каттама таками тамаи татаки катаи катт аттмат атакта ктм итата ааа катамит аммиакат катати татакати ткати акм аат итт тамат амака амам таак амаа тта амма атит имма камат камтита киама киат киатата маа макиа мактат мактиа мамак мамат мамата мами мима митка таати тами тамик татам катим амика атикат киата матата матиа таам таимат тамамат татиа татим титка мамик амма макатит таам атма каит аатами матика иктат

А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я